

"European Network for Arthropod Vector Surveillance for Human Public Health"

Third AGM Riga 2012

VBORNET - WP1.5

Gap analysis

Distribution maps

- Data sources:
 - Expert contributions
 - Published information
 - Existing data bases
- VBORNET vector distribution data base
- VBORNET quality control check
- Three monthly map updates
- RESULT: "maps with gaps"

WP1.5 – Distribution gap analysis

- Where no data are available → expert based identification of confirmed absence zones at NUTS3 level;
 - Gaps within distribution limits
 - Narrow down on distribution limits
- Develop a modeling approach based on the use of VBORNET polygon data at NUTS3 level:
 - General environmental predictor data sets
 - Species specific predictor data sets
 - Robust modeling approaches

WP1.5 – Distribution gap analysis

- Production of mixed NUTS3 level maps:
 - Observed presence/ absence,
 - Predicted presence (0/1 class based on p0.5 threshold) in identified gap zones,
 - Adapted legend.
- Expert evaluation by VBORNET community of produced output to trigger new inputs in VBORNET databases.
- Approach needs to be adapted when dealing with invasive species

Aedes albopictus

Aedes albopictus

Invasive species

- Introduction → establishment → spread
- Per definition distribution limits not known
- Models based on presence data underestimate area at risk
- Proposed strategy:
 - Limit maps to observed data (P/A, No data, Unknown)
 - Use model outputs to trigger interest for surveillance activities
 - Keep active contact with network of national experts for regular updates

Non-invasive species

- Mosquitoes:
 - Malaria vectors
 - West Nile vectors
 - RVF vectors (collaboration with EFSA)
- Ticks: Ixodes ricinus/ persulcatus, Hyalomma marginatum, Dermacentor reticulatus, Ornithodoros sp.
- Phlebotomines:
 - Prime priority: P. ariasi and P. perniciosus
 - Second priority: P. papatasi and P. perfiliewi

Anopheline species

Factsheets:

- By 31st of May 2012 Anopheles labranchiae and Anopheles sacharovi, the two most important Mediterranean species;
- By 30th of June 2012 Anopheles atroparvus and Anopheles plumbeus.
- Availability of information:
 - A. labranchiae, A. sacharovi, A. atroparvus: no
 VBORNET data available → Malaria Atlas Project
 - A. plumbeus: VBORNET data available from a few countries

Anopheles plumbeus

Ixodes ricinus/ persulcatus

Phlebotomines

Riga, May 2012

Third VBORNET AGM

Thank you for your questions!

